! DecisionBrain

Smarter Decisions. Better Results.

Migrate a DOC Application
from 4.0.0 FP3to 4.0.0 FP4

October 30, 2020

Copyright © 2012-2020 DecisionBrain S.AS. All rights reserved.

This document is confidential, and may not be disclosed to third parties without DecisionBrain's express written
permission.



Migration Steps
Dependencies changes
Version Changes
Backend
Frontend
New Dependencies
Backend
Python
Public classes/api changes
Ul and ScenarioService “Path” events
Widgets
New job button
Keycloak
Code generation change
Performance Improvement-related changes
Collector Serialization
Date Database Mapping
Improvements in Criteria APl Usage
Usage of Postgres block range indexes BRIN
Data Table Partitioning

Migration to Postgresql 12

10

10

10

10

n

n

11

12

12

12

13



Migration Steps

1.  Export all the scenarios that should be kept using the Web Application
for instance in excel format.

11. Delete them using the Ul Since we need to reset Data Service
Database after migration Scenario Service will reference
scenarios which will not have the related data

2. Export Application Configuration in a json file
3. Stop services

$ cd deployment/docker/infra

$ docker-compose down

4.  Remove Postgres database volume Warning! Be sure to have exported
scenarios data you need to keep

4]. List all the docker volumes and locate the one named
<project>-pgdata

$ docker volume ls

DRIVER VOLUME NAME

local 52d4bd725£3d6c27af141135e38a163d965980alac46e889de66a71cldo9d24a8
local ac3caB8c89d4c2a4983ad575d1db3b16609db4a2c291ledbdc40£fa00e2d154919£
local capacity-planning-mongovolume

local capacity-planning-pgdata

local £725b649b661£6637086c070£c9a884b7€a9d412479086abfl7fcf9£e927318f

42. Delete this volume

$ docker volume rm capacity-planning-pgdata
capacity-planning-pgdata
$



5. Proceed to a full project generation with 4.0.0-FP4 version to a clean
folder using following procedure :

51. create a new folder called “fp4”
52. copy in that folder

o theentities.jdl file that describes your data model (it can be

found in gene-model/src/main/resources)

o thegenerator.sh file provided with the platform(see section

Script for Application Generation of the Installation section of the

documentation

o the .yo-rc.json file produced when you originally generated
your application.

Example of .yo-rc.json file:

"@gene/generator-gene": {
"promptValues": {

"projectName": "aircraft-maintenance",
"projectTitle": "Aircraft Maintenance Optimization",
"destination": ".",
"package": "com.aircraftmaintenance",
"collectorClass": "AircraftMaintenance",
"inputFileType": "jdl1",

"inputFile": "./entities.jdl",


https://ibm-doc-documentation-400fp4.public.decisionbrain.cloud/documentation/index.html#/prerequisites/gene-installation
https://ibm-doc-documentation-400fp4.public.decisionbrain.cloud/documentation/index.html#/prerequisites/gene-installation

If you do not have .yo-rc.json file, create one using the following

information:

projectName: this is the xxx value that has been used to prefix
sub-projects like xxx-libs or xxx-services

projectTitle: thisis the title you have defined for your project toolbar

package: this is the java package you have defined

collectorClass: this is the java class name you have defined. You can find it at the
beginning of your entities jdl file

Generate An Empty Application

Use the generator.sh command to generate your application.

$ cd fp4

S 1s -al

.yo-rc.json

entities.jdl

generator.sh

S ./generator.sh -v 4.0.0-fp4

6.

Be sure to have a clean starting point with no unversioned files in your
existing fp3 project repository and all changes committed git status



10.

11.

12.

should show no changes and no untracked files, if necessary you can
use “git clean -dfx" to clean all files not present on the current branch.

Delete all files and folders from the folder keeping .git and .gradle .idea
and other potentially useful hidden folders, you can do that with “rm
-Rf *" which will not include hidden directories

Copy all the files generated at step 5 in the now empty folder of your
existing FP3 project

Run ./gradlew clean docker at the root of the project which should
execute all generation and build steps

At this stage the build should succeed but you have a project that does
not contain all the custom code.

In the git status you should now see some new untracked files, those
you can add, they are new and needed by the application.

Obviously you have many changed files, you should go through them
resolving the conflicts with your previous code. At this stage all your
custom files appear as deleted, you can now revert those files and make
the application compile with them.

Folders you should have the most work in should be
/extensions
/web.

See the detailed code changes in this document to guide you in
making the project compile again.

Restart infrastructure services with “docker-compose up -d”

Once conflicts are resolved and the web interface can be launched
re-import the application configuration and the scenarios using the Ul



Dependencies changes

Version Changes

Backend

Jackson: 299 - 211.0
Postgresgl 10.0 » 12.0
OpenAPIl generator: 4.2.2 » 4.3.1

Frontend

@angular/cdk: 7.0.0 » 9.1.0
@ng-select/ng-select: 4.0.0 » 4.0.4
angular-tree-component@8.5.6 »
@circlon/angular-tree-component@9.0.3
echarts: 4.4.0 » 4.8.0
ngx-color-picker: 8.2.0 » 9.1.0
ngx-moment: 3.4.0 » 5.0.0
ngx-toastr: 12.0.1 » 12.1.0

moment: 2.24.0 » 2.27.0

lodash: 4.17.15 » 4.17.19

corejs: 2.4.1 -+ 3.6.5

New Dependencies
Backend
mapstruct: 1.3.1.Final

univocity-parsers: 2.8.4
kotlin: 1.3.50

Python

python: 3.6
pandas: 1.1.0
xvik/gradle-use-python-plugin: 2.2.0



pip: 20.1

setuptools: 46.1.3
wheel: 0.34.2

twine: 3.1.1pytest: 5.4.1
pytest-cov: 2.10.0

Public classes/api changes

1. Field “groups” removed from following classes, it is not relevant anymore due
to the new permissions system :

com.decisionbrain.gene.application.model.GeneUser
com.decisionbrain.scenario.dto.GeneUserDTO
GeneUser from @gene/core (Typescript)

2. Argument scope removed from:

e all scenario-service endpoints defined in controllers under
com.decisionbrain.scenario.controller

e related api clients, generated under com.decisionbrain.gene.scenario.api

Ul and ScenarioService “Path” events

1. Event types emitted by
com.decisionbrain.scenario.service.notification.NotificationService on the
scenario-server websocket topic were removed :

PATH_NODE _LOCKED

PATH_NODE _UNLOCKED

PATH_NODE _OWNER_UPDATED

PATH_NODE _GROUP_UPDATED

PATH_NODE _PERMISSIONS_UPDATED

PATH_NODE _GROUP_AND_PERMISSIONS_UPDATED

PATH_NODE_MODIFIED



PATH_NODE _DELETED

PATH_NODE _CREATED

As a consequence in the Web Ul they are not processed and (re)-emitted by
GeneScenarioNotificationsService anymore.

If you relied on those events you have to use new events introduced in 4.0.0-FP4
which are more specific to the application element type :

SCENARIO_LOCKED,
SCENARIO_UNLOCKED,
SCENARIO_MODIFIED,
SCENARIO_DELETED,
SCENARIO_RESTORED,

SCENARIO_CREATED,

VIEW_DASHBOARD_RESTORED,

WORKSPACE _RESTORED,

WORKSPACE _DELETED,
WORKSPACE _CREATED,

WORKSPACE_MODIFIED,

VIEW_DASHBOARD_DELETED,

VIEW_DASHBOARD_CREATED,

VIEW_DASHBOARD_MODIFIED,

APPLICATION_SETTINGS_CHANGED



APPLICATION_PERMISSIONS_CHANGED

2. More information on elements in GeneScenarioEvent

The “uuids” member is deprecated, starting with 4.0.0-FP4 GeneScenarioEvents will
provide a new member “elements” containing an array of objects providing uuid,
name and parentUuid of the impacted objects

class GeneScenarioEvent {
// @Deprecated, use 'elements' member with IdWithNameAndParent
public uuids: string[],
public type: GeneScenarioEventType,
public userId: string = null,
public userName: string = null,
public pathNodes: PathNode[] = [],
public data: any = null,
// since FP4

public elements: IdWithNameAndParent[] = []

}

interface IdWithNameAndParent {
/%
* A string that is not empty, used as an identifier
*/
uuid: string;

/**



* The element\'s name
2y
name?: string;
/**
* The element\'s parent uuid
2y

parentUuid?: string;

Widgets

1. New job button

The job button and its configurator have been updated and enriched with additional
features such as defining wether parameters should be locked, asked upon
execution etc.

As a consequence the widgets configurations may no longer be valid, and you
should have to edit the widgets configurations again with this new version.

2. Keycloak

New “manage-users” role was added to the scenario service, for the
realm-management client.

This role allows the scenario service to modify attributes of a user. This is used to
detect the first user’s login into the application.

Code generation change

A breaking change was introduced due to a bugfix on the handling of entities with
consecutive uppercase characters.

Here an example of the change. Consider A business model entity with the following
property : MYTestUTILITYFunction

10



In previous versions this name would convert to the following column name:
m_ytest_ut_il_it_yfunction

With FP4 it will be : my_test_utility_function

It also impacts generated DbDomObjects and JPA entities fields

MYTestUTILITYFunction -> myTestUTILITYFunction

Performance Improvement-related changes

Collector Serialization

Collector serialisation using CSV format which uses postgresql COPY operations

To use CSV format, you need to use withFormat() on ScenarioDataExpression
(see example below).

To use CSV format as result from DBOS worker, you need to use (see exemple
below):

e in the task definitionwithOutputScenario("outputCollector",
ScenarioDataFormat.CSV,.)

e inthe Worker implementation emitOutputCollector(output, collector,
DbDomCollectorSerializerFormat.CSV);

Performance improvements in deleting a complete scenario.
Performance improvements in duplicating a complete scenario.

Improvements in Memory/Cpu usage with collectors.

Note that DBRFC serialization of collectors remains the default serialisation
mechanism, so that upgrading to FP4 without modifying Task / Worker should not
have any impact. CSV is the the default serialisation method in FP4.

Date Database Mapping

JPA Instant attributes are now mapped to SQL BIGINT instead of TIMESTAMP to
avoid formatting and parsing Date String (see bellow script to migrate existing

databases).

n



Improvements in Criteria APl Usage

The criteria APl is used to implement all our generic queries (GraphQL or REST), this
release brings two changes that reduce the execution time of all queries.

e Reduce over-fetching by using Multi Select instead of Select. Instead of
fetching objects, we now fetch individual object properties.

e Fix wrong construction of Join queries when filters are set leading to
duplicate CROSS JOIN Sgl query generation, instead of single LEFT JOIN

e As aconseqgquence DataService REST APl is now aligned with GraphQL and no
longer returns plain DTO objects but dynamic JSON content (through
JsonNode and JsonArray objects). requestedFieldNames is now a mandatory
parameter for all the endpoints.

Usage of Postgres block range indexes BRIN

So far, the generated default indexes were using standard btree indexes for
db_gene_internal_scenario_id. However our data have commmon properties that fit
very well with BRIN indexes:

e same values for all rows of a same scenario,

e rows of a same scenario are likely to be contiguous because written most of
the time by bulk (collector read/write)

Usage of BRIN indexes reduces both indexes size and query response time.

Data Table Partitioning

Introduced Postgresqgl Partitioning by LIST. The idea of partitioning is to sustain the
same level of performance on queries no matter of how many rows / scenarios are
stored in the database. When the size of tables grows, indexes grow as well.

When performing queries, the pgsql execution engine has to reduce as fast as
possible the rows involved. It uses as part of this process indexes fully loaded in
working_memory. When the table size hits the working memory limit then the
engine has to process the query using batch operations which heavily impacts
response times.

Also when performing INSERT & DELETE postgres uses one trigger per FK involved *
rows involved.

12



By splitting tables per scenario we make sure we limit the number of rows to a
certain volume depending on the project data size.

Migration to Postgresqgl 12

By introducing Data Table Partitioning, which is a breaking change in the initially
generated SQL, we also upgraded to the latest stable version of Postgresqgl which
improves greatly partition management when having thousands of partitions.

It also improves COPY performances with large datasets

https://www.2ndguadrant.com/en/blog/postgresql-12-partitioning/

e NOTE: Postgresqgl data server user now requires SUPERUSER privileges (see in
deployment create-user.sh)

13


https://www.2ndquadrant.com/en/blog/postgresql-12-partitioning/

